{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Matplotlib 101" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Assoc. Prof. Dr. Piyabute Fuangkhon\n", "# Department of Digital Business Management\n", "# Martin de Tours School of Management and Economics\n", "# Assumption University\n", "# Update: 22/05/2024" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction to Matplotlib 101 (Visualizing COVID-19 Data)\n", "\n", "In this notebook, we will explore the basics of Matplotlib while visualizing data from the OWID COVID-19 dataset. We will cover various types of plots including line plots, bar plots, scatter plots, histograms, and more." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Global file location\n", "file_location = 'owid-covid-data.csv'" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | iso_code | \n", "continent | \n", "location | \n", "date | \n", "total_cases | \n", "new_cases | \n", "new_cases_smoothed | \n", "total_deaths | \n", "new_deaths | \n", "new_deaths_smoothed | \n", "... | \n", "male_smokers | \n", "handwashing_facilities | \n", "hospital_beds_per_thousand | \n", "life_expectancy | \n", "human_development_index | \n", "population | \n", "excess_mortality_cumulative_absolute | \n", "excess_mortality_cumulative | \n", "excess_mortality | \n", "excess_mortality_cumulative_per_million | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "AFG | \n", "Asia | \n", "Afghanistan | \n", "2020-01-05 | \n", "NaN | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "0.0 | \n", "NaN | \n", "... | \n", "NaN | \n", "37.746 | \n", "0.5 | \n", "64.83 | \n", "0.511 | \n", "41128772.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
1 | \n", "AFG | \n", "Asia | \n", "Afghanistan | \n", "2020-01-06 | \n", "NaN | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "0.0 | \n", "NaN | \n", "... | \n", "NaN | \n", "37.746 | \n", "0.5 | \n", "64.83 | \n", "0.511 | \n", "41128772.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
2 | \n", "AFG | \n", "Asia | \n", "Afghanistan | \n", "2020-01-07 | \n", "NaN | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "0.0 | \n", "NaN | \n", "... | \n", "NaN | \n", "37.746 | \n", "0.5 | \n", "64.83 | \n", "0.511 | \n", "41128772.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
3 | \n", "AFG | \n", "Asia | \n", "Afghanistan | \n", "2020-01-08 | \n", "NaN | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "0.0 | \n", "NaN | \n", "... | \n", "NaN | \n", "37.746 | \n", "0.5 | \n", "64.83 | \n", "0.511 | \n", "41128772.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
4 | \n", "AFG | \n", "Asia | \n", "Afghanistan | \n", "2020-01-09 | \n", "NaN | \n", "0.0 | \n", "NaN | \n", "NaN | \n", "0.0 | \n", "NaN | \n", "... | \n", "NaN | \n", "37.746 | \n", "0.5 | \n", "64.83 | \n", "0.511 | \n", "41128772.0 | \n", "NaN | \n", "NaN | \n", "NaN | \n", "NaN | \n", "
5 rows × 67 columns
\n", "